301 research outputs found

    On cycles and the stable multi-set polytope

    Get PDF
    AbstractStable multi-sets are an integer extension of stable sets in graphs. In this paper, we continue our investigations started by Koster and Zymolka [Stable multi-sets, Math. Methods Oper. Res. 56(1) (2002) 45–65]. We present further results on the stable multi-set polytope and discuss their computational impact.The polyhedral investigations focus on the cycle inequalities. We strengthen their facet characterization and show that chords need not weaken the cycle inequality strength in the multi-set case. This also helps to derive a valid right hand side for clique inequalities.The practical importance of the cycle inequalities is evaluated in a computational study. For this, we revisit existing polynomial time separation algorithms. The results show that the performance of state-of-the-art integer programming solvers can be improved by exploiting this general structure

    Treewidth: Computational Experiments.

    Get PDF
    Many NP-complete graph problems can be solved in polynomial time for graphs with bounded treewidth. Equivalent results are known for pathwidth and branchwidth. In recent years, several studies have shown that this result is not only of theoretical interest but can successfully be applied to find (almost) optimal solutions or lower bounds for diverse optimization problems. To apply a tree decomposition approach, the treewidth of the graph has to be determined, independently of the application at hand. Although for fixed k, linear time algorithms exist to solve the decision problem ``treewidth at most k, their practical use is very limited. The computational tractability of treewidth has been rarely studied so far. In this paper, we compare four heuristics and two lower bounds for instances from applications such as the frequency assignment problem and the vertex coloring problem. Three of the heuristics are based on well-known algorithms to recognize triangulated graphs. The fourth heuristic recursively improves a tree decomposition by the computation of minimal separating vertex sets in subgraphs. Lower bounds can be computed from maximal cliques and the minimum degree of induced subgraphs. A computational analysis shows that the treewidth of several graphs can be identified by these methods. For other graphs, however, more sophisticated techniques are necessary.operations research and management science;

    Robust Flows over Time: Models and Complexity Results

    Full text link
    We study dynamic network flows with uncertain input data under a robust optimization perspective. In the dynamic maximum flow problem, the goal is to maximize the flow reaching the sink within a given time horizon TT, while flow requires a certain travel time to traverse an edge. In our setting, we account for uncertain travel times of flow. We investigate maximum flows over time under the assumption that at most Γ\Gamma travel times may be prolonged simultaneously due to delay. We develop and study a mathematical model for this problem. As the dynamic robust flow problem generalizes the static version, it is NP-hard to compute an optimal flow. However, our dynamic version is considerably more complex than the static version. We show that it is NP-hard to verify feasibility of a given candidate solution. Furthermore, we investigate temporally repeated flows and show that in contrast to the non-robust case (that is, without uncertainties) they no longer provide optimal solutions for the robust problem, but rather yield a worst case optimality gap of at least TT. We finally show that the optimality gap is at most O(ηklogT)O(\eta k \log T), where η\eta and kk are newly introduced instance characteristics and provide a matching lower bound instance with optimality gap Ω(logT)\Omega(\log T) and η=k=1\eta = k = 1. The results obtained in this paper yield a first step towards understanding robust dynamic flow problems with uncertain travel times
    corecore